DEVELOPMENT AND TURBINE ENGINE PERFORMANCE OF THREE ADVANCED RHENIUM CONTAINING SUPERALLOYS FOR SINGLE CRYSTAL AND DIRECTIONALLY SOLIDIFIED BLADES AND VANES

Robert W. Broomfield, David A. Ford, Harry K. Bhangu
Rolls-Royce plc
[Derby and Bristol, U.K.]

Malcolm C. Thomas, Donald J. Frasier, Phil S. Burkholder
Allison Engine Company (Rolls-Royce plc)
[Indianapolis, Indiana U.S.A.]

Ken Harris, Gary L. Erickson, Jacqueline B. Wahl
Cannon-Muskegon Corporation
(SPS Technologies, Inc.)
[Muskegon, Michigan U.S.A.]

ABSTRACT

Turbine inlet temperatures over the next few years will approach 1650°C (3000°F) at maximum power for the latest large commercial turbofan engines, resulting in high fuel efficiency and thrust levels approaching 445 kN (100,000 lbs). High reliability and durability must be intrinsically designed into these turbine engines to meet operating economic targets and extended over-water, large twin engine aircraft (ETOPS) certification requirements.

This level of performance has been brought about by a combination of advances in air cooling for turbine blades and vanes, design technology for stresses and airflow, single crystal and directionally solidified casting process improvements and the development and use of rhenium (Re) containing high γ′ nickel-base superalloys with advanced coatings, including full-airfoil ceramic thermal barrier coatings. Re additions to cast airfoil superalloys not only improve creep and thermo-mechanical fatigue strength but also environmental properties, including coating performance. Re dramatically slows down diffusion in these alloys at high temperature turbine operation conditions.

A team approach has been used to develop a family of two nickel-base single crystal alloys (CMSX-4® containing 3% Re and CMSX®-10 containing 6% Re) and a directionally solidified, columnar grain nickel-base alloy (CM 186 LC® containing 3% Re) for a variety of turbine engine applications. A range of critical properties of these alloys are reviewed in relation to component turbine engineering performance through engine certification testing and service experience.

Industrial turbines are now commencing to use this aero developed turbine technology in both small and large frame units in addition to aero-derivative industrial engines. These applications are demanding, with high reliability required for turbine airfoils out to 25,000 hours, with perhaps greater than 50% of the time spent at maximum power. Combined cycle efficiencies of large frame industrial engines is scheduled to reach 60% in the U.S. ATS programme. Application experience out to a total 1.3 million engine hours and 28,000 hours individual blade set service for CMSX-4 first stage turbine blades is reviewed for a small frame industrial engine.

NOMENCLATURE

ASMET = accelerated simulated mission endurance test
ATS = advanced turbine system
C = carbon
CGR = crack growth rate
DS = directionally solidified
EDAX = energy dispersive x-ray micro-analysis
EFH = engine flight hours

CMSX-2®, CMSX-3®, CMSX-4®, CMSX-6®, CMSX®-10, CM 247 LC® and CM 186 LC® are registered trademarks of the Cannon-Muskegon Corporation.
LAMILLOY® is a registered trademark and CASTCOOL™ a trademark of Allison Engine Company.
ETOPS = extended over water, twin engine certification requirements
HCF = high cycle fatigue
HIP = hot isostatic pressing
HP = high pressure
IP = intermediate pressure
ISA = International Standard Atmosphere (15°C)
kN = kilo newton
LCF = low cycle fatigue
LMP = Larson-Miller parameter
LNG = liquid natural gas
MFB = machined-from-blade
MW(e) = mega-watt
NGV = nozzle guide vane
OPR = overall pressure ratio
ppm = part per million
S = sulfur
SEM = scanning electron microscope
T = temperature
TBC = thermal barrier coating
TCP = topologically close-packed phase
TEM = transmission electron microscope
TET = turbine entry temperature
TF = thermal fatigue
TFCIL = thermal fatigue crack initiation life
TMF = thermo-mechanical fatigue
TTT = transformation-time-temperature
WDX = wavelength dispersive micro-analysis
[N] = combined nitrogen
[O] = combined oxygen
γ = gamma phase
γ' = gamma prime phase
Δe_{mech} = change in mechanical strain
K_f = stress concentration factor

INTRODUCTION
During the last 30 years, turbine inlet temperatures have increased by about 500°C (900°F). About 70% of this increase is due to more efficient design of air cooling for turbine blades and vanes, particularly the advent of serpentine convection and film cooling and the use of full airfoil thermal barrier ceramic coatings, while the other 30% is due to improved superalloys and casting processes. The greatest advances in metal temperature and stress capability for turbine airfoils has been the result of the development of single crystal superalloy, casting process and engine application technology pioneered by Pratt and Whitney Aircraft (PWA) (Gell et al., 1980).

Maximum metal temperatures approaching 1130°C (2066°F) have been flight qualified for CMSX-4 turbine blades at maximum engine power during accelerated, simulated mission endurance testing (ASMET) (Fullagar et al., 1994). Full airfoil and platform advanced thermal barrier coatings have been certified for commercial turbine engine use, with the capability to increase gas temperatures by 100°C (180°F), or reduce metal temperatures commensurately to dramatically improve turbine blade life (PW, 1994).

Allison's unique dual-wall Lamilloy® quasi-transpiration cooling technology applied to CMSX-4 single crystal airfoils facilitates a further 222°C (400°F) to 333°C (600°F) turbine inlet temperature capability increase over the next five years. The Castcool™ Lamilloy® technology combines film leading and trailing edge airfoil cooling, with the dual-wall Lamilloy cooling in the rest of the airfoil in a one piece single crystal casting, further improving the cost of manufacture. The fine detail and complexity of these components bring manufacturing considerations to the forefront (Harris et al., 1990, Burkholder et al., 1995). (Fig. 1).

Figure 1 - AE 301X Castcool 1st Stage Blade - CMSX-4 Alloy

The composition of the first generation single crystal superalloys which have attained turbine engine application status are shown in Table I. These alloys are characterized by similar creep-rupture strength. However, they exhibit different single crystal castability, residual gamma/gamma prime (γ/γ') eutectic phase content following solution heat treatment, absence or presence of carbides, impact and mechanical fatigue properties (HCF & LCF), environmental oxidation and hot corrosion properties, coating performance and density.

Turbine engine experience with the first generation single crystal alloys has resulted in process developments being combined with Re containing alloy development to improve and maximize overall properties of the turbine airfoil components (Harris et al., 1990). Microstructures can be optimized to be fully solutioned and HIPed, to contain neither γ/γ' eutectic phase, nor regions of incipient melting, carbides, nor microporosity (Fullagar et al., 1994). The published compositions of the Re containing single crystal alloys are shown in Table II.
Table I
First Generation Single Crystal Superalloys
Nominal Composition, wt. %

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Cr</th>
<th>Co</th>
<th>Mo</th>
<th>W</th>
<th>Ta</th>
<th>V</th>
<th>Nb (Ni)</th>
<th>Al</th>
<th>Ti</th>
<th>Hf</th>
<th>Ni</th>
<th>Density (g/dm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWA 1480</td>
<td>10</td>
<td>5</td>
<td>-</td>
<td>4</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>5.0</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>8.70</td>
</tr>
<tr>
<td>René N4</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.56</td>
</tr>
<tr>
<td>SRR 99</td>
<td>8</td>
<td>5</td>
<td>-</td>
<td>10</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
<td>2.2</td>
<td>-</td>
<td>8.56</td>
</tr>
<tr>
<td>RR2000</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
<td>4.0</td>
<td>-</td>
<td>7.87</td>
</tr>
<tr>
<td>AM1</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.2</td>
<td>1.2</td>
<td>-</td>
<td>8.59</td>
</tr>
<tr>
<td>AM3</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
<td>2.0</td>
<td>-</td>
<td>8.25</td>
</tr>
<tr>
<td>CMSX-2</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.6</td>
<td>1.0</td>
<td>-</td>
<td>8.58</td>
</tr>
<tr>
<td>CMSX-3</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.6</td>
<td>1.0</td>
<td>-</td>
<td>8.58</td>
</tr>
<tr>
<td>CMSX</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
<td>4.7</td>
<td>-</td>
<td>7.99</td>
</tr>
<tr>
<td>SX 792</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>4.2</td>
<td>-</td>
<td>8.25</td>
</tr>
</tbody>
</table>

Table II
Re Containing Single Crystal Alloys
Nominal Composition, wt. %

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Cr</th>
<th>Co</th>
<th>Mo</th>
<th>W</th>
<th>Ta</th>
<th>Nb (Ni)</th>
<th>Re</th>
<th>Al</th>
<th>Ti</th>
<th>Hf</th>
<th>Ni</th>
<th>Density (g/dm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMSX-4</td>
<td>6.5</td>
<td>9</td>
<td>.6</td>
<td>6</td>
<td>6.5</td>
<td>-</td>
<td>3</td>
<td>5.6</td>
<td>1.0</td>
<td>.1</td>
<td>-</td>
<td>8.70</td>
</tr>
<tr>
<td>PWA 1484</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>-</td>
<td>3</td>
<td>5.6</td>
<td>-</td>
<td>.1</td>
<td>-</td>
<td>8.95</td>
</tr>
<tr>
<td>SC 180</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>8.5</td>
<td>-</td>
<td>3</td>
<td>5.2</td>
<td>1.0</td>
<td>.1</td>
<td>-</td>
<td>8.64</td>
</tr>
<tr>
<td>René N5</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>-</td>
<td>3</td>
<td>6.2</td>
<td>-</td>
<td>.2</td>
<td>-</td>
<td>8.63</td>
</tr>
<tr>
<td>CMSX -10</td>
<td>4</td>
<td>12</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>-</td>
<td>5</td>
<td>5.8</td>
<td>-</td>
<td>.2</td>
<td>-</td>
<td>8.07</td>
</tr>
</tbody>
</table>

Component cost considerations particularly for commercial aero gas turbines and industrial engines has resulted in the development of the three Re containing directionally solidified columnar grain (DS) superalloys (Table III). These alloys have similar creep-rupture strength to the first generation single crystal superalloys. PWA 1426 (Cetel et al., 1992) is used 50% solutioned, René 142 (Ross and O’Harra, 1992 b) close to 100% solutioned and CM 186 LC as-cast (Harris et al., 1992, Carrol et al., 1996). The absence of a solutioning requirement with CM 186 LC not only lowers cost and improves manufacturability (no recrystallisation or incipient melting problems) but also provides excellent transverse intermediate temperature ductility and transverse low cycle fatigue (LCF) properties.

Table III
Re Containing DS Alloys
Nominal Composition, wt. %

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Cr</th>
<th>Co</th>
<th>Mo</th>
<th>W</th>
<th>Ta</th>
<th>Nb (Ni)</th>
<th>Re</th>
<th>Al</th>
<th>Ti</th>
<th>Hf</th>
<th>C</th>
<th>Zr</th>
<th>Ni</th>
<th>Density (g/dm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWA 1426</td>
<td>6.5</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>3.6</td>
<td>-</td>
<td>1.5</td>
<td>10</td>
<td>.015</td>
<td>.03</td>
<td>-</td>
<td>-</td>
<td>8.6</td>
</tr>
<tr>
<td>René 142</td>
<td>6.8</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3.6</td>
<td>-</td>
<td>1.5</td>
<td>12</td>
<td>.015</td>
<td>.02</td>
<td>-</td>
<td>-</td>
<td>8.6</td>
</tr>
<tr>
<td>CM 186 LC</td>
<td>6.0</td>
<td>9</td>
<td>.8</td>
<td>3</td>
<td>3</td>
<td>5.7</td>
<td>-</td>
<td>1.4</td>
<td>.07</td>
<td>.015</td>
<td>.005</td>
<td>-</td>
<td>-</td>
<td>8.70</td>
</tr>
</tbody>
</table>

ALLOY DEVELOPMENT
Development in the CM family of single crystal superalloys have been in two general directions since the inception of CMSX-2® and CMSX-3® alloys (Harris et al., 1983, Harris et al., 1986):
- Partial replacement of tungsten (W) with increasing Re. Lowering of Cr to accommodate the increased alloying with acceptable phase stability.
- Partial replacement of titanium (Ti) by tantalum (Ta). Re is a key element, and the magnitude of the improvement which it provides in creep and LCF strength at 950°C (1742°F) is illustrated in Figs. 2 and 3. As an example, changing from a non-Re containing alloy SRR99 to a 6% Re alloy CMSX-10 (RR 3000) increases creep strength at 500 hours life by 46%, and increases fatigue strength at 20,000 cycles life by 59%.

Figure 2 - The Strength Advantage of Re-Containing Single Crystals over SRR 99 - 1% Creep Strain, 950°C (1742°F)

![Figure 2](image_url)

Figure 3 - The Strength Advantage of Re-Containing Single Crystals Over SRR 99 - Low Cycle Fatigue, 950°C (1742°F)

In order to understand the reasons behind this improvement, the distribution of Re through the microstructure has been studied in some detail on three scales: dendritic, microscopic and atomic.
DISTRIBUTION OF RHENIUM

On the dendritic scale, it is well known that Re segregates strongly to the dendrite centers and that even after a solution/homogenisation heat treatment, a uniform distribution is not achieved (Table IV). In the Rolls-Royce materials specifications for CMSX-4 and CMSX-10 (RR 3000), a different approach to measuring dendritic segregation following solution/homogenisation heat treatment has been taken. A large number of measurements of Re, W and Ta levels are made across a section perpendicular to crystal growth, and the standard deviations associated with the distributions for each element are calculated. An upper limit is set for the standard deviation for each element; the limits vary from one alloy to the other, but they do not vary by component in a given alloy. The solution/homogenisation heat treatments developed for both alloys are designed to minimise residual dendritic microsegregation to maximise phase stability.

Table IV
CMSX-4 ALLOY
0.25" (6.4 mm) o Test Bar Allison Solution/Homogenisation Heat Treatment + Double Aged
SEM-WDX Analysis (wt. %)

<table>
<thead>
<tr>
<th>Center of Primary Dendrite</th>
<th>Interdendritic Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>5.8</td>
</tr>
<tr>
<td>Co</td>
<td>9.7</td>
</tr>
<tr>
<td>Ni</td>
<td>BAL</td>
</tr>
<tr>
<td>W</td>
<td>6.1</td>
</tr>
<tr>
<td>Mo</td>
<td>.6</td>
</tr>
<tr>
<td>Ti</td>
<td>.9</td>
</tr>
<tr>
<td>Al</td>
<td>5.7</td>
</tr>
<tr>
<td>Re</td>
<td>3.7</td>
</tr>
<tr>
<td>Ta</td>
<td>5.0</td>
</tr>
<tr>
<td>Hf</td>
<td>.06</td>
</tr>
</tbody>
</table>

On a microscopic scale, the composition of the γ' phase has been measured in both CMSX-4 and in an early variant of CMSX-10 (RR 3000) containing 5.3% Re (RR 2067) using energy dispersive X-ray (EDAX) analysis on thin TEM foils. The alloy and γ' phase composition was as shown in Table V.

The γ' compositions were much more similar to each other than were the alloy compositions, basically (Ni, Co), (Al, Ta) with some Cr, W and Ti dissolved. The Re contents in the γ' were low, and so on the basis that both CMSX-4 and CMSX-10 (RR 3000) contain about 70 vol. % γ', this implies average Re levels in the γ phase of about 6 wt. % and 13% (by weight) respectively in the two alloys. It is not surprising therefore, that under conditions where dislocation movement is confined to the γ phase, Re additions are very powerful strengtheners.

Table V
Alloy and γ' phase compositions.

<table>
<thead>
<tr>
<th>Nominal wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR2067</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Mo</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>Re</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>Ta</td>
</tr>
<tr>
<td>CMSX-4</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Mo</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>Re</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>Ta</td>
</tr>
<tr>
<td>Gamma Prime (γ') wt. %</td>
</tr>
<tr>
<td>RR2067</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Mo</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>Re</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>Ta</td>
</tr>
<tr>
<td>CMSX-4</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Mo</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>Re</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>Ta</td>
</tr>
</tbody>
</table>

Atom-probe micro-analyses of Re containing modifications of PWA 1480 and CMSX-2 alloys reveal the occurrence of short range order in the γ matrix (Blavette et al. 1986, Blavette et al., 1988). Small Re clusters (approximately 1.0 μm in size) are detected in the alloys. The Re clusters act as efficient obstacles to dislocation movement in the γ matrix channels compared to isolated solute atoms in solid solution and thereby play a significant role in improving alloy strength. The benefits of Re to mechanical properties are seen in situations where dislocation movement within the γ phase matrix channels is controlling. Where dislocations pass readily through both γ and γ' phases, the strength advantage is smaller. Dislocations travel mainly within the γ matrix channels at higher temperatures >850°C (1562°F). A consistent benefit for CMSX-4 for example is therefore seen in tensile strength, creep and stress-rupture strength over the temperature range 850-1050°C (1562-1922°F) where the temperature capability advantage is at least 30°C (54°F) over SRR 95.

Further work on the distribution of Re on the atomic scale is being undertaken at Oxford University using atom-probe micro-analysis. In fully heat-treated CMSX-10 (RR 3000), a pronounced buildup of Re has been observed adjacent to the γ' particles - as one might expect since Re is a slow-diffusing element which is rejected by the growing γ' (Fig. 4).

Figure 4 - Re Distribution Across γ and γ' Phases CMSX-10 (RR 3000)
INFLUENCE OF Re UPON SELECTED PROPERTIES

The influence of Re is all-pervasive in this class of superalloy, but five areas have been selected: stability of γ' microstructure at high temperatures, effect of Re distribution upon primary creep behavior, the oxidation performance of Re bearing alloys, the thermal fatigue properties of Re containing alloys and finally their LCF properties.

Stability of the γ' Structure

γ' stability is important in terms of resistance to coarsening and re-solutioning of γ' during coating or brazing operations. CMSX-4 has good performance in this respect, as indicated by a recent South African paper (Miglietti and Pennefather, 1996). These workers measured γ' size following a wide range of brazing/diffusion heat treatments up to 1240°C (2264°F). These times and temperatures have been combined via the Larson-Miller parameter (LMP) (Fig. 5); there is steady γ' growth up to a LMP of 30,000, but much faster growth thereafter. The 30,000 value corresponds for instance to 3 hours at 1190°C (2174°F) (a typical brazing condition). It is interesting to note that the resistance to γ' coarsening appears to be improved by the 1140°C (2085°F) intermediate age used for CMSX-4. As-solution-treated CMSX-4 was soaked for various times and temperatures by Roan (1996), and in this condition, 3 hours at 1190°C (2174°F) caused significant dissolution of the cubic γ'. Quite probably the Re "wall" at the γ'/γ' interface, observed in the atom-probe work, is effective in restricting growth and dissolution of the γ'.

Figure 5 - Larson-Miller Parameter Gamma Prime Size in CMSX-4 vs. Soaking Condition, hrs/°C

γ' stability is further improved in the 6% Re alloy CMSX-10 (RR 3000). During creep tests at 1175°C (2147°F) a stable γ' rafted structure developed in a few hours, and was still stable after 60 hours testing (Fig. 6).

Primary Creep Behavior

During the development of CMSX-10 (RR 3000) it was noted that the magnitude of primary creep varied with the casting source. Times to rupture were fairly consistent, but the times to 1% creep strain on samples from the "good" source were between two and four times as long as those from the "worst" source. When the standard homogeneity check was carried out, a good correlation was observed between homogeneity and creep life; the standard deviation for rhenium was 1.23% in the worst samples, falling to 0.6% in the best ones. A proposed explanation for this effect is as follows:

In cast and heat treated single crystals, the dislocations are concentrated in interdendritic regions (Pollack and Argon, 1992). As deformation occurs, these dislocations multiply and spread throughout the structure. In more heavily segregated test pieces, the dislocation motion at the start of the test (i.e., primary creep) will therefore occur in regions low in rhenium, and hence low in creep strength. A rapid rate of primary creep would therefore be expected. In the most segregated sample referred to above, it was estimated that the weakest 10% of the structure contained only 3.0 - 4.3% Re and 4.5% W, so might be comparable with homogeneous CMSX-4 with 2.9% Re + 6.4% W. Once dislocations have spread throughout the structure the overall creep rate will be a function of the average composition of the alloy, hence segregation has less effect upon the stress-rupture life.

Oxidation Behavior

The oxidation performance of 3% and 6% Re containing single crystal alloys at 1100°C (2012°F) for instance, is remarkably good bearing in mind the low chromium content of these materials. Normally, in cast superalloys with 5.5 - 6.2% aluminum (Strangman, et al., 1980) one would not expect a
stable, protective α alumina film to form with less than about 8% Cr present, yet CMSX-10 (RR 3000) has quite good performance in this respect, with only 2% Cr. Once again, Re could be the key element. Research at Cambridge University (Chen and Little, 1995) showed that Re did not enter the oxide film, but it did concentrate in the γ' depleted zone beneath the oxide. Figure 7 is taken from the work of Chen and Little (1995) and demonstrates twice as much Re in this region, as there is in the base alloy. It is proposed that this Re concentration slows down the diffusion of elements such as Ti into the aluminium oxide scales, so increasing the oxide scale stability. Residual ppm's (10-20 ppm) of Y and La have been shown to dramatically improve the bare oxidation resistance and coating performance on CMSX-4 alloy (Fig. 8, 9 & 10) (Thomas, et al., 1994, Korinko, et al., 1996) when the S content of the alloy is < 2 ppm.

Figure 7 - Re Distribution Beneath The Oxide / Metal Interface

HIP & Solutioned

1177°C (2150°F) Dynamic Oxidation Test

Mach 0.45
Cyclic (once per hr)

Figure 8 - CMSX-4 Mod A. (bare) (15 ppm Y) (< 2ppm S)

Figure 9 - Becon Burner Rig Dynamic Cyclic Oxidation Bare Alloys 1038°C (1900°F), 0.4 Mach

Figure 10 - Becon Burner Rig Dynamic Cyclic Oxidation CMSX-4 + La [16ppm] Bare & Coated [CM Heat V8614] 1038°C (1900°F) 0.4 Mach
Phase Stability

One aspect of critical importance in these high Re superalloys is the metallurgical stability, i.e., the rate of formation of topologically-close packed phases (TCPs). These are not present significantly in the practical use of CMSX-4, but in CMSX-10 (RR 3000) the operating conditions of components have to be carefully considered against the TTT curve for formation of these phases. CMSX-4 shows continuing linear relationships for log stress to log stress-rupture life, with no fall-off due to excessive TCP phase formation, out to the extent of current testing: 5600 hrs. at 1121°C (2050°F), 12,400 hrs. at 1093°C (2000°F), and 17000 hrs. at 982°C (1800°F). The composition of these TCP phases has been established by Chen and Little (1995) as shown in Table VI.

<table>
<thead>
<tr>
<th>TCP Phases [wt %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
</tr>
<tr>
<td>CMSX-4</td>
</tr>
<tr>
<td>CMSX -10 (RR 3000)</td>
</tr>
</tbody>
</table>

Unlike the γ' phase referred to earlier, the compositions of the TCP phases formed are clearly different in the two alloys. They are both basically Ni-Cr-W-Re, but the Re: W ratio in particular is much higher in CMSX-10 (RR 3000), reflecting the basic chemistry differences of the two alloys.

The important factor from a turbine engine performance viewpoint is of course the effect which these TCP phases have upon mechanical properties. Some TCP phases particularly in multi-grain cast superalloys have a marked embrittling effect, but these do not; their effect is to reduce creep strength when a certain volume fraction is formed by concentrating Re and W into an ineffective form, in effect de-alloying the material. During the CMSX-10 (RR 3000) development programme, the amount of TCP phase was estimated by a point-counting technique. The point was counted if it fell either on a TCP needle or on its γ' envelope, so in effect the proportion of the structure that was other than the normal γ' + γ was measured. To give one example, unstressed exposure of CMSX-10 (RR 3000) for 250 hours at 1100°C (2012°F) gave an area fraction of TCPs of 5%, but this had no deleterious effect upon the impact strength, high or low cycle fatigue strength of the alloy. A substantial deviation in creep strength was only seen when the area fraction of TCPs approached 20%. In that condition, the creep elongation was still in the range of 13 to 18%, confirming these TCPs do not have an embrittling effect upon this single crystal alloy at this area fraction level.

Thermal Fatigue (TF)

The thermal fatigue behavior of CMSX-4 and SRR99 has been investigated on blade-shaped single edge wedge specimens (Meyer - Olbersleben, et al., 1992, Meyer - Olbersleben, et al., 1996). The strain was measured at the wedge tip of the TF specimens. Temperature-mechanical strain cycles with different mean strain values and strain ratios were obtained. The strain distribution on the edge was presented. Further, TF crack initiation life and total life depend on the strain cycle, which itself is temperature gradient dependent. On the basis of TF strain measurements, a new TMF cycle was introduced. An integrated approach for TF and TMF investigations was proposed. Preliminary investigations show that under the test conditions used, TF cycling is more damaging than TMF. TF crack initiation mechanisms for both superalloys were identified. Finally, the higher TF crack initiation resistance of CMSX-4 is explained by its higher oxidation resistance combined with a higher mechanical strength of its γ'-depleted zone and γ/γ'-microstructure (Fig. 11) (Meyer - Olbersleben, 1996).

In SRR99 and CMSX-4, residual cast microporosity on the wedge tip led to stress concentration. For both alloys under high strain loading, cracks always initiate on these porosities at the specimen surface, Fig. 11a + b.

Under low strain loading the number of thermal cycles (N) to crack initiation is much higher. Nevertheless, the same mechanism of crack initiation on microporosities was observed for CMSX-4, Fig. 11d. For SRR99, a complex mechanism of oxidation/spallation/reoxidation combined with the effect of the residual cast microporosity was identified as the crack initiation mechanism, Fig. 11.

Wedge tips of CMSX-4 specimens remained almost intact during low strain loading even after very high numbers of thermal cycles (Fig. 11d), showing its high resistance to oxidation, while wedge tips of SRR99 specimens were highly damaged by oxide-scale spalling.

For both alloys investigated, crack initiation was always observed only after an incubation period, which is dependent upon the strain range and the maximum temperature of the thermal cycle. All cracks have been initiated at the wedge tip surface and propagated towards the bulk. For all tests, an initial increase in the crack growth rate (CGR) was followed by a pronounced decrease when the crack length was between 2-3 mm. The exact beginning of this crack growth retardation depends upon Δε_mec and T_max.

The reduction of thermal gradients in the specimen depth and subsequent decrease in thermal strains and stresses at the crack tip is the main reason for crack growth retardation on blade-shaped specimens. For longer cracks, the lower temperature and the lower interaction with oxygen should also be considered as an additional cause. No significant difference in the CGR was observed between SRR99 and CMSX-4 for the same TF test conditions.

HIP treatments were found of course to enhance TF resistance by closing the microporosity.
CASTABILITY

Rolls-Royce investment foundries have cast well over 150 tonnes of Re containing superalloys over the last 10 years. Principle applications are turbine blading for both military and civil engines. During the period of introduction Rolls-Royce have worked closely with Cannon-Muskegon and have evaluated, in-depth, the alloys CM 186 LC, CMSX-4 and CMSX-10 (RR 3000). Each alloy has presented the foundry with interesting challenges and as a result considerable understanding of each alloy’s behavior has been gained.

From a castability viewpoint CMSX-4 performed well with little difference observed in grain selection and quality to first generation RR alloys such as RR2000 and SRR99 when cast under conditions appropriate to these alloys. However, a revision of casting conditions showed CMSX-4 to be less prone to freckle chains and freckle generated defects than SRR99. Production experience has confirmed the general absence of these defects. CMSX-4 has shown no particular propensity to high angle boundary formation and recrystallisation at 1.6% critical strain as is typical of other single crystal alloys.

During the development of CMSX-10 (RR 3000) over 10 chemistry iterations were considered to meet the castability and mechanical property objectives, including microstructural stability. The development programme showed certain chemistries to be sensitive to freckle formation, particularly at low casting temperatures. However, a satisfactory combination of properties were achieved and production experience has shown no excessive tendency to any common single crystal defect. Foundry yields are in line with first and second generation single crystal alloys.

Table VIII lists the critical chemistries of the nineteen - 8000 lb blend heats of CMSX-4 manufactured to date. The ability to recycle CMSX-4 foundry revert to these high quality standards which ensure the blend heats perform quite as well as 100% virgin heats, has resulted in significant single crystal component cost reduction, which along with significant advances in single crystal casting technology result in turbine airfoil yields often > 90%.
Table VIII
Critical Chemistry [wt % or ppm] CMSX-4 Alloy Blend V-3 8000 lb. Heats

<table>
<thead>
<tr>
<th>HEAT #</th>
<th>BLEND RATIO</th>
<th>C ppm</th>
<th>S ppm</th>
<th>B ppm</th>
<th>[N] ppm</th>
<th>[O] ppm</th>
<th>Al ppm</th>
<th>Ti ppm</th>
<th>Zr ppm</th>
<th>Si ppm</th>
<th>Fe ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>V8331</td>
<td>50R/50S</td>
<td>18</td>
<td>2</td>
<td><20</td>
<td>2</td>
<td>2</td>
<td>5.63</td>
<td>1.02</td>
<td>18</td>
<td>.01</td>
<td>.040</td>
</tr>
<tr>
<td>V8481</td>
<td>50R/50S</td>
<td>17</td>
<td>2</td>
<td><20</td>
<td>2</td>
<td>1</td>
<td>5.67</td>
<td>1.02</td>
<td>25</td>
<td>.02</td>
<td>.026</td>
</tr>
<tr>
<td>V8562</td>
<td>50R/50S</td>
<td>20</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.51</td>
<td>1.04</td>
<td>17</td>
<td>.02</td>
<td>.037</td>
</tr>
<tr>
<td>V8563</td>
<td>50R/50S</td>
<td>21</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.66</td>
<td>1.02</td>
<td>22</td>
<td>.01</td>
<td>.036</td>
</tr>
<tr>
<td>V8564</td>
<td>50R/50S</td>
<td>21</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.63</td>
<td>1.02</td>
<td>17</td>
<td>.01</td>
<td>.040</td>
</tr>
<tr>
<td>V8640</td>
<td>60R/40S</td>
<td>25</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.63</td>
<td>1.03</td>
<td>17</td>
<td>.02</td>
<td>.036</td>
</tr>
<tr>
<td>V8653</td>
<td>50R/50S</td>
<td>19</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.65</td>
<td>1.03</td>
<td>32</td>
<td>.01</td>
<td>.037</td>
</tr>
<tr>
<td>V8655</td>
<td>50R/50S</td>
<td>23</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.64</td>
<td>1.02</td>
<td>30</td>
<td><.01</td>
<td>.032</td>
</tr>
<tr>
<td>V8657</td>
<td>50R/50S</td>
<td>22</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.66</td>
<td>1.03</td>
<td>30</td>
<td>.01</td>
<td>.030</td>
</tr>
<tr>
<td>V8676</td>
<td>50R/50S</td>
<td>18</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.68</td>
<td>1.04</td>
<td>17</td>
<td>.01</td>
<td>.031</td>
</tr>
<tr>
<td>V8820</td>
<td>60R/40S</td>
<td>28</td>
<td>4</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.66</td>
<td>1.01</td>
<td>22</td>
<td>.01</td>
<td>.045</td>
</tr>
<tr>
<td>V8821</td>
<td>60R/40S</td>
<td>27</td>
<td>3</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.68</td>
<td>1.01</td>
<td>21</td>
<td>.01</td>
<td>.044</td>
</tr>
<tr>
<td>V8848</td>
<td>60R/40S</td>
<td>32</td>
<td>3</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.70</td>
<td>1.01</td>
<td>18</td>
<td>.01</td>
<td>.049</td>
</tr>
<tr>
<td>V8857</td>
<td>50R/50S</td>
<td>30</td>
<td>2</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.68</td>
<td>1.02</td>
<td>39</td>
<td>.01</td>
<td>.061</td>
</tr>
<tr>
<td>V8876</td>
<td>60R/40S</td>
<td>24</td>
<td>3</td>
<td><20</td>
<td>2</td>
<td>2</td>
<td>5.65</td>
<td>1.01</td>
<td>32</td>
<td>.01</td>
<td>.051</td>
</tr>
<tr>
<td>V8877</td>
<td>60R/40S</td>
<td>27</td>
<td>3</td>
<td><20</td>
<td>3</td>
<td>1</td>
<td>5.65</td>
<td>1.01</td>
<td>32</td>
<td>.01</td>
<td>.044</td>
</tr>
<tr>
<td>V9042</td>
<td>60R/40S</td>
<td>24</td>
<td>3</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.65</td>
<td>1.03</td>
<td>24</td>
<td>.01</td>
<td>.053</td>
</tr>
<tr>
<td>V9081</td>
<td>50R/50S</td>
<td>30</td>
<td>3</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.67</td>
<td>1.02</td>
<td>39</td>
<td><.02</td>
<td>.054</td>
</tr>
<tr>
<td>V9119</td>
<td>40R/60S</td>
<td>30</td>
<td>1</td>
<td><20</td>
<td>1</td>
<td>1</td>
<td>5.64</td>
<td>1.02</td>
<td>10</td>
<td><.01</td>
<td>.067</td>
</tr>
</tbody>
</table>

MEAN	24	2	<20	2	1	5.65	1.02	25	.01	.041
STD. DEV.	4	.6	–	.6	.4	.02	.01	7	–	.010
MIN. VALUE	17	2	–	1	1	5.61	1.01	17	<.01	.026
MAX. VALUE	32	4	–	3	2	5.70	1.04	39	.02	.061

Cannon-Muskegon initiated a collaboration with Rolls-Royce in 1987 to establish the castability of a series of CM 186 LC alloy variants with chemical iterations controlling the level of the grain boundary elements C, Zr, Si and B.

The castability assessment consisted of a series of experiments to establish the propensity to grain boundary cracking, porosity and ceramic shell/core reaction. RB211 HP and IP turbine blades were cast with a variety of casting conditions and mould assembly designs to understand the behavior of the various chemical modifications. The results of these trials showed the benefit of reducing Si and Zr levels to minimise any tendency for grain boundary cracking. The optimised chemistry showed no adverse foundry problems or other unusual problems. Casting yields, based on rejections associated with the alloy, were very high and equivalent to the best materials evaluated by RR. Grain structure defects such as freckle chains were not encountered.

Although no components are in production at Rolls-Royce with this alloy, castings have been produced for both military and civil demonstrator engines. These castings were produced from mixed virgin/revert material utilising scrap 3% Re CMSX-4 material and balancing virgin elements to create the CM 186 LC composition.

ALLISON ENGINE TEST RESULTS

Initial engine design for the T 406, AE 2100 and AE 3007 engines incorporated a variety of nickel-base superalloys in the high pressure turbines, including CMSX-3, IN 738 C and MAR M 247. These alloys successfully launched and certified this family of gas turbine aero engines; however, increased demand for higher power and lower specific fuel consumption has necessitated increased turbine entry temperatures. To accommodate the increase in temperature, improved airfoil alloys must be utilized. Significant development, as well as certification testing, has been done with CMSX-4.

The family of aero gas turbines mentioned above currently has amassed 7700 hours of high pressure turbine testing using CMSX-4; the distribution is 2360, 2790 and 2550 hours for the HPT 1 blade, HPT 2 vane, and HPT 2 blade, respectively. The HPT 1 blade is an air-cooled component, while the HPT 2 vane and blade have been tested and certified utilizing no cooling air. Turbine airfoils manufactured from CMSX-4 have performed successfully in a number of key test vehicles: engine #ps468 (150 hour development type test), engine #A300717 (official 150 hour FAA type test), engine #A300130 (500 hour development Accelerated Simulated Mission Endurance Test (ASMET)), engine #A300704 (official FAA overtemperature test) and engine #A300131 (official 1000 hour ASMET). Post test inspections generally include a visual, dimensional, and non-destructive dye penetrant inspection; metallurgical evaluation has also been done, but this has been limited due to its destructive nature and the desire to reuse the turbine hardware. In addition to full engine testing, component testing on a hot fatigue rig has been used to quantify the endurance limit for a representative sample of CMSX-4 blades.
Only very limited distress has been noted in the CMSX-4 airfoils after testing and the engine results indicate that the relative improvement for CMSX-4 is perhaps greater than originally anticipated. This has been particularly true regarding the multi-airfoil segmented 2nd vane (Burkholder, et al., 1995); this vane has successfully passed a 500 hour ASMET and currently is undergoing testing in a 1000 hour ASMET test. At the 900 hour mark the engine was disassembled and visually inspected; Allison engineers found the CMSX-4 vanes in excellent condition with only minor indications of any hot section damage.

With this successful development and certification database, flight test engines have already been shipped using CMSX-4 airfoils, and production AE 3007A engines incorporating CMSX-4 airfoils are expected to ship in 1996.

ROLLS-ROYCE MILITARY ENGINE EXPERIENCE

Pegasus HP1 and HP2 Turbine Blades

The F402-RR-408 engine in service with the USMC is now being fitted with "sand tolerant" HP1 and HP2 turbine blades in single crystal CMSX-4. Fleet service experience to date includes 18 engines fitted with this standard of blades, the lead engine being at 280 hours (Nov. 1996).

Figure 13 - Pegasus CMSX-4 HP1 and HP2 Turbine Blades (Concave Face)

- On Right: Aluminised L106 (×2 ASMETs)
- On Left: Pack Aluminised (×1 ASMET)

Development bench engine testing has now demonstrated a service life of 2000 hours. (2 off ASMET tests, each of 530 hrs. endurance running time) after which the blades were in good condition (Fig.12, 13, 14). Turbine entry temperatures reached 1397°C [2547°F] (1670K) simulating ISA+34°C conditions.

Pegasus LP1 Turbine Blade

A development programme has just been carried out, with the LP1 blade cast in CMSX-4. The production part is in SRR99. This has been pursued in order to both increase creep life in service, and to enable engine upgrade capability. An ASMET cyclic endurance test has just been successfully carried out on a set of CMSX-4 LP1 turbine blades. (530 hr. test). It is planned to offer this modification to the customers for the engine.

Pegasus LP1 Vane

In order to extend the life of the current equiaxed C1023 alloy LP1 NGV, it is proposed to cast the vane in CMSX-4. Castings are due in January 1997, with endurance testing starting late 1997.

Pegasus HP2 Vane

The current HP2 NGV is cast in equiaxed PD21 alloy and suffers from leading edge oxidation "burning" in earlier versions.
of the Pegasus engine, resulting in a high reject rate at overhaul. To increase the life of the component, a customer-funded programme has been initiated to validate a vane cast in CMSX-4. It is anticipated that this will offer a 100°C (180°F), increase in material property capability. Castings are due in January 1997 and following endurance testing, will be offered as a modification to the customer.

Adour LP Vane

Two engine sets of castings have been produced in CMSX-4 alloy, for development testing. The current material is equiaxed C1023. One of these sets has been machined, and is currently carrying out engine testing.

Adour HP Vane

CMSX-4 casting trials have been carried out as singles and now are being carried out as triples. These vanes are currently conventionally cast in C1023 alloy. An order for 10 sets of parts of triples has been placed to support the 2000 hr life engine programme. Finished parts are due mid 1997, for engine testing leading to certification in late 1998.

Adour HP and LP Turbine Blades

For the 2000 hr engine life initiative, it is planned to introduce CMSX-4 HP and LP turbine blades to replace the existing DS MAR M 002 and SRR 99 alloys respectively. Design work is in progress as of November 1996.

ROLLS-ROYCE CIVIL ENGINE EXPERIENCE

The RB211 and Trent family of engines powers many of the large civil aircraft being used for passenger carrying service today, including L1011, B747, B757, B767, A330 and B777.

This family has engines currently in production including the RB211-535 E4/E4B which is still one of the most reliable engines in the world, the RB211-524 G/H and the RB211-Trent 700/800 which has produced a record breaking thrust at just over 106,000 lb. thrust from a standard engine.

All currently manufactured engines in the RB211 family feature a high bypass ratio, a wide chord fan, and a 3-shaft system as part of the drive for improved efficiency, minimal weight and reduced cost of ownership. The 3-shaft concept apart from providing a more optimised matched thermodynamic cycle, incorporates an intermediate pressure (IP) shaft which rotates significantly slower than the high pressure shaft, enabling the IP turbine blade to remain uncooled. Figure 15 shows the general arrangement of Trent turbofan engine, showing the components where Re containing superalloys are used.

Figure 15 - Trent

Earlier versions of the RB211 family were certificated with directionally solidified MAR M 002 nickel based alloy HP and IP turbine blades. However, the continual drive for improved specific fuel consumption has resulted in increased overall pressure ratios (OPRs) and turbine entry temperatures (TETs). The latter are now routinely above 1800°K (1527°C) [2781°F]
during a 150 hr type test, approximately 200°C (360 °F) higher than the melting point of the materials used in the high pressure turbine. The cycle efficiency is also improved by minimum use of cooling air in the high pressure turbine which in turn requires improved material properties and cooling techniques. Additionally, the aerofoil material must be capable of accepting protective coatings, now in particular thermal barrier coatings (TBCs).

It was these considerations which led Rolls-Royce to select CMSX-4 and CMSX-10 (RR3000) for the following applications after an intensive materials characterisation programme in the laboratories and casting trials in the CRDF to establish a viable production process (Table IX).

Table IX

<table>
<thead>
<tr>
<th>Component</th>
<th>Project</th>
<th>Material</th>
<th>Bench Hours</th>
<th>Lead Service Cycles</th>
<th>Date of Entry into Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Pressure Turbine Blade</td>
<td>RB211-524G/H</td>
<td>CMSX-4</td>
<td>3115</td>
<td>2600</td>
<td>Dec 94</td>
</tr>
<tr>
<td>- Cooled</td>
<td>Trent 700</td>
<td>CMSX-4</td>
<td>4615</td>
<td>1900</td>
<td>Mar 95</td>
</tr>
<tr>
<td></td>
<td>Trent 600</td>
<td>CMSX-4</td>
<td>5025</td>
<td>600</td>
<td>Apr 96</td>
</tr>
<tr>
<td>IP Turbine Blade</td>
<td>Trent 700</td>
<td>CMSX-4</td>
<td>4615</td>
<td>1900</td>
<td>Mar 95</td>
</tr>
<tr>
<td>- Uncooled</td>
<td>Trent 800</td>
<td>CMSX-4</td>
<td>5025</td>
<td>600</td>
<td>Apr 96</td>
</tr>
<tr>
<td>HP and IP</td>
<td>RB211-524G/H</td>
<td>CMSX-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shroud Segment Liners</td>
<td>Trent 700</td>
<td>CMSX-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Trent 800</td>
<td>CMSX-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The HP turbine blade applications were driven by the need to minimise the amount of cooling air utilised without incurring creep penalties either in the airfoil or the shroud. All blades were subjected to rigorous bench engine test programmes which included temperature surveys, dynamic measurements, feed air pressure and 150 hour type tests and realistic simulated service cycle tests. The condition of the RB211-524G/H CMSX-4 blade after 5000 cycles is compared to the DS blade after 3750 cycles in Fig. 16.

The Trent 800 HP blade, shown in Fig. 17 represents the most advanced application of CMSX-4, operating at the highest OPR and TET, essentially as a cantilevered blade but with a shroud for aerodynamic performance and performance retention advantage. This blade is currently being evaluated with a full airfoil advanced TBC system for higher thrust versions of the Trent 800.

The IP turbine blade in a 3-shaft engine enables the blade to operate uncooled and hence results in improved cycle efficiency relative to a 2-shaft engine where the second stage HP turbine blade must be cooled. Because the blade is uncooled, operating at about 1000°C (1832 °F), the successive increases in TET have demanded materials with better creep and oxidation properties. Figure 18 shows the IP turbine blade in CMSX-10 (RR 3000) alloy which met the Trent demands for better creep resistance. The condition of the IP turbine blades after all of the bench tests has been excellent.

Finally, the use of CMSX-4 is being extended to HP and IP shroud segments, which form the rotor path, to overcome the component plastic deformation seen in certain applications. Analytical work has shown that the improved creep properties of
CMSX-4 will result in components which will not incur the plastic strain. The hardware is currently undergoing bench engine evaluation.

OTHER ENGINE EXPERIENCE

Solar® has reported that six years of field experience for CMSX-4 first stage blades in the MARS 100 industrial turbine has been excellent. Total running time for the 132 engines in the field is 1.25 million hrs, with the blades and Pt/Al coatings in good condition when examined at engine overall after 26,000 - 28,000 hrs service. The MARS 100 engines tend to spend at least 50% of their running time at maximum power with natural gas or liquid natural gas (LNG) as the predominant fuel (Harris, et al., 1992, Kubarych and Aurrecoechea, 1993). Figure 19 shows a photomicrograph from a MARS 100 first stage CMSX-4 turbine blade after over 25,000 service hours. The CMSX-4 substrate alloy is coated with a platinum aluminide coating applied by a pack cementation process (RT-22). The photomicrograph was obtained from an axial airfoil section near the blade tip, at the convex wall near the leading edge. Coating condition appears to be excellent.

SNECMA have successfully completed initial 400 equivalent cycle ASMET type military engine testing with DS HP vanes in CM 186 LC alloy with good results, which confirm the excellent transverse LCF properties and coating performance of the alloy. (Bourguignon, et al., 1996)

European Gas Turbines Ltd has now validated blading in both CM 186 LC and CMSX-4 alloys for application to their range of industrial gas turbines. CM 186 LC has been chosen as a cost effective DS HP rotor blade alloy for the Typhoon gas turbine to provide enhanced life margins at it's latest 4.9 MW(e) rating (Figs. 20 and 21). This cooled blade (Fig. 22) is now in full production and first engine deliveries with this standard of blade commenced in September 1996. The performance of the alloy in the foundry has been very encouraging with no problems encountered during casting development and with yields approaching 90% early in production. The first application of CMSX-4 is for an uncooled HP rotor blade in the Hurricane 1.6 MW(e) gas turbine to replace the γ'ODS alloy blade previously specified for this application.

For both applications, the blades have been fully validated in development engine testing. This has included strain gauge testing to determine in-engine vibration modes and establish HCF margins, infra-red pyrometry to measure blading metal temperatures and a cyclic endurance test to simulate up to three years of cyclic operation in service.

An extensive in-house materials testing programme on both materials has been in place to provide the mechanical and physical property data necessary for design, to provide long term creep data and to carry out corrosion and oxidation testing and coating trials. The latter have confirmed the acceptability of these alloys for long term industrial gas turbine applications with the selected layered silicon aluminide coating system (Sermalloy 1515).

Further applications of these alloys in the EGT product range are currently being pursued.
SUMMARY

The year 1997 is seventy years since the discovery of the metallic element Re. Over the last ten years Re has been successfully incorporated as a critical strengthening element in cast nickel-base superalloys used for single crystal and directionally solidified turbine airfoils.

Turbine engine test and service experience has generally exceeded expectations for the Re containing superalloys. This paper shows some of the reasons for these results relating properties to turbine engine component performance for three of the alloys.
ACKNOWLEDGMENTS
The authors wish to acknowledge the significant contributions to this work from the following people:

Rolls-Royce:
K. P. L. Fullagar
R. A. B. McCall
C. T. J. Scrivener
P. D. Price
D. Hopkins
M. Baseley
D. Bolton
E. A. Tough
P. Tougher
M. J. Goulette
H. C. Low
A. Denton
A. D. Hill
M. Hulands
J. A. Peck

Allison Engine Co. [RR plc]:
J. Skinner
P. S. Korinko
M. J. Barber
R. C. Helmink
J. R. Whetstone
J. Lane
T. Specht
M. Kline
H. Largent
M. D. Wilson
L. Burns

Cannon-Muskegon Corp.:
T. A. Versalle
G. DeWind
S. L. Sikkenga
J. M. Eridon
J. DeHorn
M. Elwell

European Gas Turbines Ltd:
J. M. Hannis
J. Sutton
G. McColvin
A. Purcell
P. Barnard
M. Whitehurst
D. Allen
B. Piercey

SNECMA:
S. Bourguignon
F. Caruel
B. Lallement
A. DeBussac

REFERENCES

Khan T. (ONERA) and Brun M. (Turbomeca), June 1989, Symposium on Single Crystal Alloys, MTU/SMCT, Munich.

PW 2037 Engine Display, Sept. 1994, Farnborough Air Show (PWA).

* Superalloys, Seven Springs, PA., TMS Proc.